W. Najm W.N.

AMERICAN UNIVERSITY OF BEIRUT FACULTY OF ENGINEERING AND ARCHITECTURE MECH 230 - DYNAMICS - QUIZ 1

NAME:

ID No:

Mar. 20, 2010

90 minutes open book

- 1- Solve the problems on the question sheets.
- 2- Write your solution in the given space.
- 3- Use the scratch booklet before writing on the question sheet.
- 4- The scratch booklet will not be collected and will not be graded.
- 5- Dirty paper will not be corrected.

No.1-(25%)

Particles A and B are moving along the straight line. At t=0 s particle A has a velocity of 4 m/s and a constant acceleration of 0.6 m/s². At t=0 s particle B has a velocity of 6 m/s and a constant deceleration of 0.4 m/s² and is located at 25 m from A as shown.

10% 1- Determine the instant of time when A meets B.

Solution:

10% 2- Determine the distance traveled by A at the instant it meets B.

5% 3- Determine the velocity of each particle at the instant they meet.

Solution:

No.2- (25%)

A Particle starts its motion from rest at A and moves counterclockwise along the circular path of radius 50 m. The particle increases its speed at a constant rate of 3 m/s².

10% 1- Determine the instant of time when the particle reaches point B as shown.

Solution:

5% 2- Determine the velocity of the particle at B.

NAMF:				
NOME:		•	-	
	•	•		
		-		

ID No:

5 % 3- Determine the normal and tangential acceleration of the particle at B.

Solution

5 % 4- Determine the angular velocity $\overset{\bullet}{\theta}$ and the angular acceleration $\overset{\bullet}{\theta}$ of the radial line representing the position of the particle at B at this instant.

No.3- (25%)

The 10-kg block B is supported by the 40-kg block A which is pulled up by the constant 500 N force parallel to the incline. Neglect friction between block A and the incline. Block B does not slip on block A

5% 1- Draw the free body diagrams and the kinetic diagrams of blocks A and B separately as well as A and B together.

	•		_
-	•	24	╸.
	_		

ID No:

10% 2- Determine the acceleration of the blocks.

Solution

10% 3- Determine the minimum allowable value of the coefficient of static friction between the blocks so that slippage does not occur.

No.4- (25%)

Blocks A and B have masses of 4 kg and 1.5 kg respectively, and are connected by a cord and pulley system and released from rest in the position shown with the spring undeformed. The spring constant is k=300 N/m and the kinetic coefficient of friction between block A and the ground is μ_k =0.1

k=300 N/m

A

A

B

1.5 kg

5% 1- Draw the work free body diagrams of blocks A and B as one system.

Solution

10% 2- Determine the work of the friction force and the spring force on block A and the work of the weight of block B after block A has moved 0.1 m to the right.

Solution

10% 4- Determine the speed of block A after it has moved 0.1 m to the right.

